Cart (Loading....) | Create Account
Close category search window
 

Ultrafast all-optical switching with an asymmetric Fabry-Perot device using low-temperature-grown GaAs: material and device issues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Loka, H.S. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Smith, P.W.E.

For future telecommunications systems to take full advantage of the optical fiber bandwidth, it will be necessary to have components responding at picosecond speeds. The only way currently known to achieve these speeds is using all-optical switching. By using low-temperature-grown GaAs (LT-GaAs) in a compact asymmetric Fabry-Perot device, we have achieved ultrafast all-optical switching with large bandwidth, high contrast ratio, low insertion loss, and low switching energy. In this paper, we discuss the dependence of the switch performance on the mirror bandwidth and reflectivity, and the LT-GaAs layer thickness and growth conditions. We develop guidelines for the optimization of the device design to maximize the bandwidth and contrast ratio.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:36 ,  Issue: 1 )

Date of Publication:

Jan. 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.