By Topic

Exploring the novel characteristics of hetero-material gate field-effect transistors (HMGFETs) with gate-material engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xing Zhou ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore

The novel characteristics of a new type of MOSFET, the hetero-material gate field-effect transistor (HMGFET), are explored theoretically and compared with those of the compatible MOSFET. Two conceptual processes for realizing the HMG structure are proposed for integration into the existing silicon technology. The two-dimensional (2-D) numerical simulations reveal that the HMGFET demonstrates extended threshold voltage roll-off to much smaller length and shows simultaneous transconductance enhancement and suppression of short-channel effects (SCEs) [drain-induced barrier-lowering (DIBL) and channel-length modulation (CLM)] and, more importantly, these unique features could be controlled by engineering the material and length of the gate. This work demonstrates a new way of engineering ultrasmall transistors and provides the incentive and guide for experimental exploration

Published in:

IEEE Transactions on Electron Devices  (Volume:47 ,  Issue: 1 )