Cart (Loading....) | Create Account
Close category search window

Analysis of thin multioctave cavity-backed slot spiral antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ozdemir, T. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Volakis, J.L. ; Nurnberger, M.W.

Thin cavity-backed Archimedean slot spirals are analysed through an efficient implementation of the finite element method. Through numerical analysis, fundamental differences between the free-space and cavity-backed configurations are identified. The bandwidth limitation imposed by the presence of the cavity is remedied by terminating the spiral slot with tapered resistive loading and employing larger apertures. Design improvements are presented based on the interpretation of the numerical simulations. It is shown that a 0.8 cm (0.33 in) thick and 24 cm (9 in) wide antenna can provide circular polarisation over a nearly 4:1 bandwidth

Published in:

Microwaves, Antennas and Propagation, IEE Proceedings  (Volume:146 ,  Issue: 6 )

Date of Publication:

Dec 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.