Cart (Loading....) | Create Account
Close category search window

Soft-decision majority decoding of Reed-Muller codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dumer, I. ; Coll. of Eng., California Univ., Riverside, CA, USA ; Krichevskiy, R.

We present a new soft-decision majority decoding algorithm for Reed-Muller codes RM(r,m). First, the reliabilities of 2m transmitted symbols are recalculated into the reliabilities of 2m-r parity checks that represent each information bit. In turn, information bits are obtained by the weighted majority that gives more weight to more reliable parity checks. It is proven that for long low-rate codes RM(r,m), our soft-decision algorithm outperforms its conventional hard-decision counterpart by 10 log10(π/2)≈2 dB at any given output error probability. For fixed code rate R and m→∞, our algorithm increases almost 2r/2 times the correcting capability of soft-decision bounded distance decoding

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 1 )

Date of Publication:

Jan 2000

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.