By Topic

Fast and precise Fourier transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Buhler, J. ; Dept. of Math., Reed Coll., Portland, OR, USA ; Shokrollahi, M.A. ; Stemann, V.

Many applications of fast Fourier transforms (FFTs), such as computer tomography, geophysical signal processing, high-resolution imaging radars, and prediction filters, require high-precision output. An error analysis reveals that the usual method of fixed-point computation of FFTs of vectors of length 2l leads to an average loss of l/2 bits of precision. This phenomenon, often referred to as computational noise, causes major problems for arithmetic units with limited precision which are often used for real-time applications. Several researchers have noted that calculation of FFTs with algebraic integers avoids computational noise entirely. We combine a new algorithm for approximating complex numbers by cyclotomic integers with Chinese remaindering strategies to give an efficient algorithm to compute b-bit precision FFTs of length L. More precisely, we approximate complex numbers by cyclotomic integers in Z[e(2πi/2n)] whose coefficients, when expressed as polynomials in e(2πi/2n), are bounded in absolute value by some integer M. For fixed n our algorithm runs in time O(log(M)), and produces an approximation with worst case error of O(1/M(2n-2-1)). We prove that this algorithm has optimal worst case error by proving a corresponding lower bound on the worst case error of any approximation algorithm for this task. The main tool for designing the algorithms is the use of the cyclotomic units, a subgroup of finite index in the unit group of the cyclotomic field. First implementations of our algorithms indicate that they are fast enough to be used for the design of low-cost high-speed/high-precision FFT chips

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 1 )