By Topic

Linear multiuser receivers in random environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tse, D.N.C. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Zeitouni, O.

We study the signal-to-interference (SIR) performance of linear multiuser receivers in random environments, where signals from the users arrive in “random directions.” Such a random environment may arise in a DS-CDMA system with random signature sequences, or in a system with antenna diversity where the randomness is due to channel fading. Assuming that such random directions can be tracked by the receiver, the resulting SIR performance is a function of the directions and therefore also random. We study the asymptotic distribution of this random performance in the regime where both the number of users K and the number of degrees of freedom N in the system are large, but keeping their ratio fixed. Our results show that for both the decorrelator and the minimum mean-square error (MMSE) receiver, the variance of the SIR distribution decreases like 1/N, and the SIR distribution is asymptotically Gaussian. We compute closed-form expressions for the asymptotic means and variances for both receivers. Simulation results are presented to verify the accuracy of the asymptotic results for finite-sized systems

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 1 )