By Topic

Polynomial invariants of quantum codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rains, E.M. ; AT&T Res., Florham Park, NJ, USA

The weight enumerators (Shor and Laflamme 1997) of a quantum code are quite powerful tools for exploring its structure. As the weight enumerators are quadratic invariants of the code, this suggests the consideration of higher degree polynomial invariants. We show that the space of degree k invariants of a code of length n is spanned by a set of basic invariants in one-to-one correspondence with Skn. We then present a number of equations and inequalities in these invariants; in particular, we give a higher order generalization of the shadow enumerator of a code, and prove that its coefficients are nonnegative. We also prove that the quartic invariants of a ((4, 4, 2))2 code are uniquely determined, an important step in a proof that any ((4, 4, 2))2 code is additive (Rains 1999)

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 1 )