By Topic

An Assmus-Mattson theorem for Z4-codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tanabe, K. ; Graduate Sch. of Math., Kyushu Univ., Fukuoka, Japan

The Assmus-Mattson theorem is a method to find designs in linear codes over a finite field. The purpose of this paper is to give an analog of this theorem for Z4-codes by using the harmonic weight enumerator introduced by Bachoc. This theorem can find some 5-designs in the lifted Golay code over Z4 which were discovered previously by other methods

Published in:

Information Theory, IEEE Transactions on  (Volume:46 ,  Issue: 1 )