By Topic

Improved upper bounds on the ML decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. Sason ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; S. Shamai

The ensemble performance of parallel and serial concatenated turbo codes is considered, where the ensemble is generated by a uniform choice of the interleaver and of the component codes taken from the set of time-varying recursive systematic convolutional codes. Following the derivation of the input-output weight enumeration functions of the ensembles of random parallel and serial concatenated turbo codes, the tangential sphere upper bound is employed to provide improved upper bounds on the block and bit error probabilities of these ensembles of codes for the binary-input additive white Gaussian noise (AWGN) channel, based on coherent detection of equi-energy antipodal signals and maximum-likelihood decoding. The influence of the interleaver length and the memory length of the component codes is investigated. The improved bounding technique proposed here is compared to the conventional union bound and to a alternative bounding technique by Duman and Salehi (1998) which incorporates modified Gallager bounds. The advantage of the derived bounds is demonstrated for a variety of parallel and serial concatenated coding schemes with either fixed or random recursive systematic convolutional component codes, and it is especially pronounced in the region exceeding the cutoff rate, where the performance of turbo codes is most appealing. These upper bounds are also compared to simulation results of the iterative decoding algorithm

Published in:

IEEE Transactions on Information Theory  (Volume:46 ,  Issue: 1 )