By Topic

Analysis of coplanar waveguide-to-coplanar stripline transitions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shau-Gang Mao ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Chieh-Tsao Hwang ; Wu, Ruey-Beei ; Chun Hsiung Chen

The coplanar waveguide (CPW)-to-coplanar stripline (CPS) transition is analyzed theoretically and experimentally in this paper. To characterize this transition in the lower frequency band, a simple equivalent-circuit model that consists of uniform and nonuniform transmission lines is established. The elements of this model can all be obtained by the closed-form formulas; hence, this model is suitable for computer-aided-design application. This model is then applied to design and analyze the CPW-to-CPS transitions with various structure parameters. In the higher frequency band, the partially prism-gridded finite-difference time-domain (FDTD) method is employed to take into account the bond-wire effect as well as the surface-wave leakage and space-wave radiation associated with the transition. In this study, results based on equivalent-circuit model, FDTD simulation, and measurement are compared. Good agreement among these results supports the usefulness of the proposed equivalent-circuit model and also validates the FDTD method. By using the equivalent-circuit model to optimize the transition configuration, the CPW-to-CPS transition with broad bandwidth and low insertion loss may be achieved

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:48 ,  Issue: 1 )