By Topic

Stochastic language adaptation over time and state in natural spoken dialog systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Riccardi, Giuseppe ; Shannon Lab., AT&T Bell Labs., Florham Park, NJ, USA ; Gorin, A.L.

We are interested in adaptive spoken dialog systems for automated services. Peoples' spoken language usage varies over time for a given task, and furthermore varies depending on the state of the dialog. Thus, it is crucial to adapt automatic speech recognition (ASR) language models to these varying conditions. We characterize and quantify these variations based on a database of 30 K user-transactions with AT&T's experimental How May I Help You? spoken dialog system. We describe a novel adaptation algorithm for language models with time and dialog-state varying parameters. Our language adaptation framework allows for recognizing and understanding unconstrained speech at each stage of the dialog, enabling context-switching and error recovery. These models have been used to train state-dependent ASR language models. We have evaluated their performance with respect to word accuracy and perplexity over time and dialog states. We have achieved a reduction of 40% in perplexity and of 8.4% in word error rate over the baseline system, averaged across all dialog states

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:8 ,  Issue: 1 )