By Topic

Holistic verification of handwritten phrases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. Madhvanath ; IBM Almaden Res. Center, San Jose, CA, USA ; E. Kleinberg ; V. Govindaraju

In this paper, we describe a system for rapid verification of unconstrained off-line handwritten phrases using perceptual holistic features of the handwritten phrase image. The system is used to verify handwritten street names automatically extracted from live US mail against recognition results of analytical classifiers. Presented with a binary image of a street name and an ASCII street name, holistic features (reference lines, large gaps and local contour extrema) of the street name hypothesis are “predicted” from the expected features of the constituent characters using heuristic rules. A dynamic programming algorithm is used to match the predicted features with the extracted image features. Classes of holistic features are matched sequentially in increasing order of cost, allowing an ACCEPT/REJECT decision to be arrived at in a time-efficient manner. The system rejects errors with 98 percent accuracy at the 30 percent accept level, while consuming approximately 20/msec per image on the average on a 150 MHz SPARC 10

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:21 ,  Issue: 12 )