Cart (Loading....) | Create Account
Close category search window
 

Run-time cache bypassing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Johnson, T.L. ; Hewlett-Packard Co., Cupertino, CA, USA ; Connors, D.A. ; Merten, M.C. ; Hwu, W.-M.W.

The growing disparity between processor and memory performance has made cache misses increasingly expensive. Additionally, data and instruction caches are not always used efficiently, resulting in large numbers of cache misses. Therefore, the importance of cache performance improvements at each level of the memory hierarchy will continue to grow. In numeric programs, there are several known compiler techniques for optimizing data cache performance. However, integer (nonnumeric) programs often have irregular access patterns that are more difficult for the compiler to optimize. In the past, cache management techniques such as cache bypassing were implemented manually at the machine-language-programming level. As the available chip area grows, it makes sense to spend more resources to allow intelligent control over the cache management. In this paper, we present an approach to improving cache effectiveness, taking advantage of the growing chip area, utilizing run-time adaptive cache management techniques, optimizing both performance and cost of implementation. Specifically, we are aiming to increase data cache effectiveness for integer programs. We propose a microarchitecture scheme where the hardware determines data placement within the cache hierarchy based on dynamic referencing behavior. This scheme is fully compatible with existing instruction set architectures. This paper examines the theoretical upper bounds on the cache hit ratio that cache bypassing can provide for integer applications, including several Windows applications with OS activity. Then, detailed trace-driven simulations of the integer applications are used to show that the implementation described in this paper can achieve performance close to that of the upper bound

Published in:

Computers, IEEE Transactions on  (Volume:48 ,  Issue: 12 )

Date of Publication:

Dec 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.