By Topic

Synthesis for testability of highly complex controllers by functional redundancy removal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fummi, F. ; DST Inf., Verona Univ., Italy ; Sciuto, D. ; Serra, M.

This paper presents a testable synthesis methodology applicable to any top-down design method based on hardware-description-language descriptions, or graphical representations. The methodology is targeted on control-dominated applications and it is based on the identification and removal of a new class of redundant faults, called functionally redundant faults. The formal relation between functionally redundant faults and sequentially redundant faults is introduced. Moreover, the relation between functionally redundant faults and logic synthesis algorithms based on local don't cares is shown. Functionally redundant faults are identified and removed by comparing the implemented synchronous sequential circuit, which can be technology dependent, to its specification. The specification can be a single finite state machine (FSM), a set of interacting FSMs, or a hierarchical FSM that allows the description of highly complex controllers. The proposed methodology produces testable circuits, with area reduction, still mapped on the same technology library, and it manages circuits which cannot be handled by other methods presented in the literature

Published in:

Computers, IEEE Transactions on  (Volume:48 ,  Issue: 12 )