Cart (Loading....) | Create Account
Close category search window
 

Frequency-band complex noninteger differentiator: characterization and synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oustaloup, A. ; Equipe CRONE-LAP, Bordeaux I Univ., Talence, France ; Levron, F. ; Mathieu, B. ; Nanot, F.M.

The state-of-the-art on generalized (or any order) derivatives in physics and engineering sciences, is outlined for justifying the interest of the noninteger differentiation. The problems subsequent to its use in real-time operations are then set out so as to motivate the idea of synthesizing it by a recursive distribution of zeros and poles. An analysis of the existing work is also proposed to support this idea. A comprehensive study is given of the synthesis of differentiators with integer, noninteger, real or complex orders, and whose action is limited to any given frequency bandwidth. First, a definition, in the operational and frequency domains, of a frequency-band complex noninteger order differentiator, is given in a mathematical space with four dimensions which is a Banach algebra. Then, the determination of its synthesized form, by a recursive distribution of complex zeros and poles characterized by complex recursive factors, is presented. The complex noninteger differentiation order is expressed as a function of these recursive factors. The number of zeros and poles is calculated to be as low as possible while still ensuring the stability of the synthesized differentiator to be synthesized. A time validation is presented. Finally, guidelines are proposed for the conception of the synthesized differentiator

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:47 ,  Issue: 1 )

Date of Publication:

Jan 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.