By Topic

Characterization of single-stage three-phase power-factor-correction circuit using modular single-phase PWM DC-to-DC converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho, Y.K.E. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, Hong Kong ; Hui, S.Y.R. ; Lee, Y.-S.

The complete DC characteristics of three-phase modular power-factor-correction (PFC) converters using single-phase pulsewidth modulation (PWM) DC-to-DC converter modules for high-power applications are studied. Using circuit averaging, the converter input and output quantities are determined numerically. Both the continuous and discontinuous output current modes of operation (CCM and DCM) are studied in detail. Near-unity power factor can be achieved with the converter modules operating in the DCM. An averaged model was used to study and determine the boundaries between DCM and CCM over the full period of the three-phase input voltage. It is found that high power factor is inherent in the converter system provided that the converters are operated in the DCM and the voltage conversion ratio is selected properly. The criteria for obtaining high power factor are analyzed and the optimal circuit parameters are determined to obtain the best achievable power factor. Both simulations and experimental results from a 1.5-kW prototype using full-bridge converter modules have confirmed the analysis

Published in:

Power Electronics, IEEE Transactions on  (Volume:15 ,  Issue: 1 )