By Topic

Tools for computing tangent curves for linearly varying vector fields over tetrahedral domains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. M. Nielson ; Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ, USA ; Il-Hong Jung

We present some very efficient and accurate methods for computing tangent curves for three-dimensional flows. Our methods work directly in physical coordinates, eliminating the usual need to switch back and forth with computational coordinates. Unlike conventional methods, such as Runge-Kutta, for computing tangent curves which give only approximations, our methods produce exact values based upon piecewise linear variation over a tetrahedrization of the domain of interest. We use balycentric coordinates in order to efficiently track cell-to-cell movement of the tangent curves

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:5 ,  Issue: 4 )