By Topic

Prediction of error rates in dose-imprinted memories on board CRRES by two different methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brucker, G.J. ; General Electric Astro-Space Div., Princeton, NJ, USA ; Stassinopoulos, E.G.

An analysis of the expected space radiation effects on the single event upset (SEU) properties of CMOS/bulk memories onboard the Combined Release and Radiation Effects Satellite (CRRES) is presented. Dose-imprint data from ground test irradiations of identical devices are applied to the predictions of cosmic-ray-induced space upset rates in the memories onboard the spacecraft. The calculations take into account the effect of total dose on the SEU sensitivity of the devices as the dose accumulates in orbit. Estimates of error rates, which involved an arbitrary selection of a single pair of threshold linear energy transfer (LET) and asymptotic cross-section values, were compared to the results of an integration over the cross-section curves versus LET. The integration gave lower upset rates than the use of the selected values of the SEU parameters. Since the integration approach is more accurate and eliminates the need for an arbitrary definition of threshold LET and asymptotic cross section, it is recommended for all error rate predictions where experimental σ-versus-LET curves are available

Published in:

Nuclear Science, IEEE Transactions on  (Volume:38 ,  Issue: 3 )