By Topic

Fast algorithms for weighted myriad computation by fixed-point search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Kalluri ; Dept. of Electr. & Comput. Eng., Delaware Univ., Newark, DE, USA ; G. R. Arce

This paper develops fast algorithms to compute the output of the weighted myriad filter. Myriad filters form a large and important class of nonlinear filters for robust non-Gaussian signal processing and communications in impulsive noise environments. Just as the weighted mean and the weighted median are optimized for the Gaussian and Laplacian distributions, respectively, the weighted myriad is based on the class of α-stable distributions, which can accurately model impulsive processes. The weighted myriad is an M-estimator that is defined in an implicit manner; no closed-form expression exists for it, and its direct computation is a nontrivial and prohibitively expensive task. In this paper, the weighted myriad is formulated as one of the fixed points of a certain mapping. An iterative algorithm is proposed to compute these fixed points, and its convergence is proved rigorously. Using these fixed point iterations, fast algorithms are developed for the weighted myriad. Numerical simulations demonstrate that these algorithms compute the weighted myriad with a high degree of accuracy at a relatively low computational cost

Published in:

IEEE Transactions on Signal Processing  (Volume:48 ,  Issue: 1 )