Cart (Loading....) | Create Account
Close category search window
 

Hierarchical simulation approach to accurate fault modeling for system dependability evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kalbarczyk, Z. ; Center for Reliable & High Performance Comput., Illinois Univ., Urbana, IL, USA ; Iyer, R.K. ; Ries, G.L. ; Patel, J.U.
more authors

This paper presents a hierarchical simulation methodology that enables accurate system evaluation under realistic faults and conditions. In this methodology, effects of low-level (i.e., transistor or circuit level) faults are propagated to higher levels (i.e., system level) using fault dictionaries. The primary fault models are obtained via simulation of the transistor-level effect of a radiation particle penetrating a device. The resulting current bursts constitute the first-level fault dictionary and are used in the circuit-level simulation to determine the impact on circuit latches and flip-flops. The latched outputs constitute the next level fault dictionary in the hierarchy and are applied in conducting fault injection simulation at the chip-level under selected workloads or application programs. Faults injected at the chip-level result in memory corruptions, which are used to form the next level fault dictionary for the system-level simulation of an application running on simulated hardware. When an application terminates, either normally or abnormally, the overall fault impact on the software behavior is quantified and analyzed. The system in this sense can be a single workstation or a network. The simulation method is demonstrated and validated in the case study of Myrinet (a commercial, high-speed network) based network system

Published in:

Software Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 5 )

Date of Publication:

Sep/Oct 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.