By Topic

Influence of temperature, humidity, and defect location on delamination in plastic IC packages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tay, A.A.O. ; Center for IC Failure Anal. & Reliability, Nat. Univ. of Singapore, Singapore ; Lin, T.Y.

The modified J-integral and the stress intensity factor based on linear elastic fracture mechanics can be applied to predict the growth of interfacial delamination in integrated circuit (IC) packages. One of the key parameters required is the interfacial fracture toughness. This paper describes the measurement of the interfacial fracture toughness as a function of temperature and relative humidity using a three-point bending test. The interfacial fracture toughness was found to decrease with temperature and relative humidity. It is proposed that delaminations propagate from very small voids or defects present at the interface. The effect of the location of these interfacial defects or cracks on delamination was studied. The IC package evaluated in this paper was an 80-pin quad flat package with a 0.2 mm defect or crack at the edge or at the center of the interface. It was found that as the temperature of the package was increased, the stress intensity factor of the edge crack was higher than that of the center crack. However, whether the edge crack will propagate first as temperature is increased depends on the ratio of mode II interface toughness to that of the mode I interface toughness. For the package under investigation, it was established that when this ratio is less than 2.69 the edge crack would propagate first, otherwise the center crack would. For small defects, it was found that the water vapor pressure developed at the interface did not have a significant effect on the value of the crack-tip stress intensity factor

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:22 ,  Issue: 4 )