Cart (Loading....) | Create Account
Close category search window

Electric-dipole radiation over a wedge with imperfectly conductive faces: a first-order physical-optics solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Papadopoulos, A.I. ; Dept. of Electr. & Comput. Eng., Aristotelian Univ. of Thessaloniki, Greece ; Chrissoulidis, Dimitrios P.

We solve a three-dimensional (3-D) electromagnetic diffraction problem involving an obtuse wedge with penetrable planar faces and an electric dipole which is parallel to the edge of the wedge. The analytical formulation is based on Stratton-Chu (1941) integrals of the electromagnetic field, which is excited by the dipole source on infinitely extending planes that coincide with the faces of the wedge. Fictitious charges are introduced along the edge to account for the discontinuity of the electromagnetic field on the faces across the edge. We evaluate asymptotically the integral expressions for the electric-field intensity far from the edge to obtain uniformly valid formulas. Our first-order physical-optics solution incorporates single reflection from both faces, the lateral wave, the edge-diffracted space wave, the edge-diffracted lateral wave, and transition terms which ensure that the electromagnetic field is finite and continuous at the single-reflection and lateral-wave boundaries. The numerical results establish the validity of this solution through a reciprocity check and comparisons with other analytical solutions

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:47 ,  Issue: 11 )

Date of Publication:

Nov 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.