Cart (Loading....) | Create Account
Close category search window
 

Adaptive MMSE maximum likelihood CDMA multiuser detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rapajic, P.B. ; Dept. of Telecommun. Eng., Australian Nat. Univ., Canberra, ACT, Australia ; Borah, D.K.

The well-known code division multiple access maximum likelihood receiver (MF-ML) uses a bank of matched filters as a generator of sufficient statistics for maximum likelihood detection of users transmitted symbols. In this paper, the bank of matched filters is replaced by a bank of adaptive minimum mean squared error (MMSE) filters as the generator of sufficient statistics. This formal replacement of the MF bank by the adaptive MMSE filter bank has significant conceptual consequences and provides improvement by several performance measures. The adaptive MMSE-ML receiver's digital implementation is significantly computationally simplified. The advantages of the proposed adaptive MMSE-ML receiver over the MF-ML receiver are: (1) ability to perform joint synchronization, channel parameter estimation, and signal detection where the signal is sent over an unknown, slowly time-varying, frequency-selective multipath fading channel; (2) increased information capacity in a multicellular environment; and (3) significantly improved bit error rate (BER) performance in a multicellular mobile communications environment. The information capacity and the BER of the proposed MMSE-ML receiver are analyzed. Numerical results showing the BER performance of the MMSE-ML receiver in a multipath channel environment are presented

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:17 ,  Issue: 12 )

Date of Publication:

Dec 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.