Cart (Loading....) | Create Account
Close category search window
 

Iterative multiuser detection using antenna arrays and FEC on multipath channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reed, M.C. ; Mobile Commun. Res. Centre, South Australia Univ., Mawson''s Lake, SA, Australia ; Alexander, P.D.

This paper investigates a multiple-access communication receiver system that receives coded data modulated using either direct-sequence code division multiple access or narrowband binary phase shift keying, with an antenna array in a multipath propagation environment. We describe an iterative receiver that improves the initial estimates from the antenna array, and therefore reduces the multiple access interference. Simulation results show that the bit error rate performance approaches that obtained when only one user's signal is incident on the array. This occurs even with a large number of users in comparison to the product of the spreading gain and array size

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:17 ,  Issue: 12 )

Date of Publication:

Dec 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.