Cart (Loading....) | Create Account
Close category search window

Hardness of approximating the minimum distance of a linear code

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dumer, I. ; Coll. of Eng., California Univ., Riverside, CA, USA ; Micciancio, D. ; Sudan, M.

We show that the minimum distance of a linear code (or equivalently, the weight of the lightest codeword) is not approximable to within any constant factor in random polynomial time (RP), unless NP equals RP. Under the stronger assumption that NP is not contained in RQP (random quasi-polynomial time), we show that the minimum distance is not approximable to within the factor 2log(1-ε)n, for any ε>0, where n denotes the block length of the code. Our results hold for codes over every finite field, including the special case of binary codes. In the process we show that the nearest codeword problem is hard to solve even under the promise that the number of errors is (a constant factor) smaller than the distance of the code. This is a particularly meaningful version of the nearest codeword problem. Our results strengthen (though using stronger assumptions) a previous result of A. Vardy (1997) who showed that the minimum distance is NP-hard to compute exactly. Our results are obtained by adapting proofs of analogous results for integer lattices due to M. Ajtai (1998) and D. Micciancio (1998). A critical component in the adaptation is our use of linear codes that perform better than random (linear) codes

Published in:

Foundations of Computer Science, 1999. 40th Annual Symposium on

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.