By Topic

A parallel genetic algorithm with distributed environment scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miki, M. ; Dept. of Knowledge Eng., Doshisha Univ., Kyoto, Japan ; Hiroyasu, T. ; Kaneko, M. ; Hatanaka, K.

Introduces an alternative approach to relieving the task of choosing optimal mutation and crossover rates by using a parallel and distributed GA with distributed environments. It is shown that the best mutation and crossover rates depend on the population sizes and the problems, and those are different between a single and multiple populations. The proposed distributed environment GA uses various combination of the parameters as the fixed values in the subpopulations. The excellent performance of the new scheme is experimentally recognized for a standard test function. It is concluded that the distributed environment GA is the fastest way to gain a good solution under the given population size and uncertainty of the appropriate crossover and mutation rates

Published in:

Systems, Man, and Cybernetics, 1999. IEEE SMC '99 Conference Proceedings. 1999 IEEE International Conference on  (Volume:1 )

Date of Conference: