Cart (Loading....) | Create Account
Close category search window
 

Semiconductor laser stabilization by external optical feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hjelme, D.R. ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA ; Mickelson, A.R. ; Beausoleil, R.G.

A report is presented on a general theory describing the effect of external optical feedback on the steady-state noise characteristics of single-mode semiconductor lasers. The theory is valid for arbitrarily strong feedback and arbitrary optical feedback configuration and spectrum. A generalized Langevin rate equation is derived. The equation is, in general, infinite order in d/dt constituting an infinite-order correction to the low-frequency weak-feedback analysis. The general formalism includes relaxation oscillations and permits analysis of the effect of feedback on the laser linewidth, frequency noise, relative intensity noise, and the relaxation oscillation sidebands in the field spectrum. The theory is applied to two important feedback configurations: the laser coupled to a single mirror and the laser coupled to a high-Q cavity.<>

Published in:

Quantum Electronics, IEEE Journal of  (Volume:27 ,  Issue: 3 )

Date of Publication:

March 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.