By Topic

Distributed shared memory with log based consistency for scalable data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hirayama, H. ; Graduate Sch. of Inf. Syst., Toshiba Corp., Japan ; Honda, H. ; Yuba, T.

The paper presents the scalable data mining problem, proposes the use of software DSM (Distributed Shared Memory) with a new mechanism as an effective solution and discusses both the implementation and performance evaluation results. It is observed that the overhead of a software DSM is very large for scalable data mining programs. A new Log Based Consistency (LBC) mechanism, especially designed for scalable data mining on the software DSM is proposed to overcome this overhead. Traditional association rule based data mining programs frequently modify the same fields by count-up operations. In contrast, the LBC mechanism keeps up the consistency by broadcasting the count-up operation logs among the multiple nodes

Published in:

Computer Software and Applications Conference, 1999. COMPSAC '99. Proceedings. The Twenty-Third Annual International

Date of Conference: