By Topic

Power optimization of variable-voltage core-based systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
I. Hong ; Synopsis Inc., Mountain View, CA, USA ; D. Kirovski ; Gang Qu ; M. Potkonjak
more authors

The growing class of portable systems, such as personal computing and communication devices, has resulted in a new set of system design requirements, mainly characterized by dominant importance of power minimization and design reuse. The energy efficiency of systems-on-a-chip (SOC) could be much improved if one were to vary the supply voltage dynamically at run time. We developed the design methodology for the low-power core-based real-time SOC based on dynamically variable voltage hardware. The key challenge is to develop effective scheduling techniques that treat voltage as a variable to be determined, in addition to the conventional task scheduling and allocation. Our synthesis technique also addresses the selection of the processor core and the determination of the instruction and data cache size and configuration so as to fully exploit dynamically variable voltage hardware, which results in significantly lower power consumption for a set of target applications than existing techniques. The highlight of the proposed approach is the nonpreemptive scheduling heuristic, which results in solutions very close to optimal ones for many test cases. The effectiveness of the approach is demonstrated on a variety of modern industrial strength multimedia and communication applications

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:18 ,  Issue: 12 )