By Topic

An adaptive segmentation algorithm for time-of-flight MRA data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. L. Wilson ; CSIRO, North Ryde, NSW, Australia ; J. A. Noble

A three-dimensional (3-D) representation of cerebral vessel morphology is essential for neuroradiologists treating cerebral aneurysms. However, current imaging techniques cannot provide such a representation. Slices of MR angiography (MRA) data can only give two-dimensional (2-D) descriptions and ambiguities of aneurysm position and size arising in X-ray projection images can often be intractable. To overcome these problems, the authors have established a new automatic statistically based algorithm for extracting the 3-D vessel information from time-of-flight (TOF) MRA data. The authors introduce distributions for the data, motivated by a physical model of blood flow, that are used in a modified version of the expectation maximization (EM) algorithm. The estimated model parameters are then used to classify statistically the voxels into vessel or other brain tissue classes. The algorithm is adaptive because the model fitting is performed recursively so that classifications are made on local subvolumes of data. The authors present results from applying their algorithm to several real data sets that contain both artery and aneurysm structures of various sizes.

Published in:

IEEE Transactions on Medical Imaging  (Volume:18 ,  Issue: 10 )