By Topic

Segmentation and measurement of the cortex from 3-D MR images using coupled-surfaces propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaolan Zeng ; Dept. of Electr. Eng. & Diagnostic Radiol., Yale Univ., New Haven, CT, USA ; L. H. Staib ; R. T. Schultz ; J. S. Duncan

The cortex is the outermost thin layer of gray matter in the brain; geometric measurement of the cortex helps in understanding brain anatomy and function. In the quantitative analysis of the cortex from MR images, extracting the structure and obtaining a representation for various measurements are key steps. While manual segmentation is tedious and labor intensive, automatic reliable efficient segmentation and measurement of the cortex remain challenging problems, due to its convoluted nature. Here, the authors' present a new approach of coupled-surfaces propagation, using level set methods to address such problems. Their method is motivated by the nearly constant thickness of the cortical mantle and takes this tight coupling as an important constraint. By evolving two embedded surfaces simultaneously, each driven by its own image-derived information while maintaining the coupling, a final representation of the cortical bounding surfaces and an automatic segmentation of the cortex are achieved. Characteristics of the cortex, such as cortical surface area, surface curvature, and cortical thickness, are then evaluated. The level set implementation of surface propagation offers the advantage of easy initialization, computational efficiency, and the ability to capture deep sulcal folds. Results and validation from various experiments on both simulated and real three dimensional (3-D) MR images are provided.

Published in:

IEEE Transactions on Medical Imaging  (Volume:18 ,  Issue: 10 )