By Topic

Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations. I. Methodology and validation on normal subjects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dawant, B.M. ; Dept. of Electr. & Comput. Eng., Vanderbilt Univ., Nashville, TN, USA ; Hartmann, S.L. ; Thirion, J.-P. ; Maes, F.
more authors

The study presented in this paper tests the hypothesis that the combination of a global similarity transformation and local free-form deformations can be used for the accurate segmentation of internal structures in MR images of the brain. To quantitatively evaluate the authors' approach, the entire brain, the cerebellum, and the head of the caudate have been segmented manually by two raters on one of the volumes (the reference volume) and mapped back onto all the other volumes, using the computed transformations. The contours so obtained have been compared to contours drawn manually around the structures of interest in each individual brain. Manual delineation was performed twice by the same two raters to test inter- and intrarater variability. For the brain and the cerebellum, results indicate that for each rater, contours obtained manually and contours obtained automatically by deforming his own atlas are virtually indistinguishable. Furthermore, contours obtained manually by one rater and contours obtained automatically by deforming this rater's own atlas are more similar than contours obtained manually by two raters. For the caudate, manual intra- and interrater similarity indexes remain slightly better than manual versus automatic indexes, mainly because of the spatial resolution of the images used in this study. Qualitative results also suggest that this method can be used for the segmentation of more complex structures, such as the hippocampus.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:18 ,  Issue: 10 )