By Topic

Automated model-based bias field correction of MR images of the brain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Van Leemput, K. ; Med. Image Comput., Univ. Hosp. Gasthuisberg, Leuven, Belgium ; Maes, F. ; Vandermeulen, D. ; Suetens, P.

The authors propose a model-based method for fully automated bias field correction of MR brain images. The MR signal is modeled as a realization of a random process with a parametric probability distribution that is corrupted by a smooth polynomial inhomogeneity or bias field. The method the authors propose applies an iterative expectation-maximization (EM) strategy that interleaves pixel classification with estimation of class distribution and bias field parameters, improving the likelihood of the model parameters at each iteration. The algorithm, which can handle multichannel data and slice-by-slice constant intensity offsets, is initialized with information from a digital brain atlas about the a priori expected location of tissue classes. This allows full automation of the method without need for user interaction, yielding more objective and reproducible results. The authors have validated the bias correction algorithm on simulated data and they illustrate its performance on various MR images with important field inhomogeneities. They also relate the proposed algorithm to other bias correction algorithms.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:18 ,  Issue: 10 )