By Topic

Topology adaptive deformable surfaces for medical image volume segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. McInemey ; Dept. of Math., Phys. & Comput. Sci., Ryerson Polytech. Inst., Toronto, Ont., Canada ; D. Terzopoulos

Deformable models, which include deformable contours (the popular snakes) and deformable surfaces, are a powerful model-based medical image analysis technique. The authors develop a new class of deformable models by formulating deformable surfaces in terms of an affine cell image decomposition (ACID). The authors' approach significantly extends standard deformable surfaces, while retaining their interactivity and other desirable properties. In particular, the ACID induces an efficient reparameterization mechanism that enables parametric deformable surfaces to evolve into complex geometries, even modifying their topology as necessary. The authors demonstrate that their new ACID-based deformable surfaces, dubbed T-surfaces, can effectively segment complex anatomic structures from medical volume images.

Published in:

IEEE Transactions on Medical Imaging  (Volume:18 ,  Issue: 10 )