Cart (Loading....) | Create Account
Close category search window

Elastic model-based segmentation of 3-D neuroradiological data sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kelemen, A. ; Computer. Vision Lab., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; Szekely, G. ; Gerig, G.

This paper presents a new technique for the automatic model-based segmentation of three-dimensional (3-D) objects from volumetric image data. The development closely follows the seminal work of Taylor and Cootes on active shape models, but is based on a hierarchical parametric object description rather than a point distribution model. The segmentation system includes both the building of statistical models and the automatic segmentation of new image data sets via a restricted elastic deformation of shape models. Geometric models are derived from a sample set of image data which have been segmented by experts. The surfaces of these binary objects are converted into parametric surface representations, which are normalized to get an invariant object-centered coordinate system. Surface representations are expanded into series of spherical harmonics which provide parametric descriptions of object shapes. It is shown that invariant object surface parametrization provides a good approximation to automatically determine object homology in terms of sets of corresponding sets of surface points. Gray-level information near object boundaries is represented by 1-D intensity profiles normal to the surface. Considering automatic segmentation of brain structures as their driving application, the authors' choice of coordinates for object alignment was the well-accepted stereotactic coordinate system. Major variation of object shapes around the mean shape, also referred to as shape eigenmodes, are calculated in shape parameter space rather than the feature space of point coordinates. Segmentation makes use of the object shape statistics by restricting possible elastic deformations into the range of the training shapes. The mean shapes are initialized in a new data set by specifying the landmarks of the stereotactic coordinate system. The model elastically deforms, driven by the displacement forces across the object's surface, which are generated by matching local intensity profiles- - . Elastical deformations are limited by setting bounds for the maximum variations in eigenmode space. The technique has been applied to automatically segment left and right hippocampus, thalamus, putamen, and globus pallidus from volumetric magnetic resonance scans taken from schizophrenia studies. The results have been validated by comparison of automatic segmentation with the results obtained by interactive expert segmentation.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:18 ,  Issue: 10 )

Date of Publication:

Oct. 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.