Cart (Loading....) | Create Account
Close category search window
 

Fingerprint identification using Delaunay triangulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bebis, G. ; Dept. of Comput. Sci., Nevada Univ., Reno, NV, USA ; Deaconu, T. ; Georgiopoulos, M.

Presents an indexing-based approach to fingerprint identification. Central to the proposed approach is the idea of associating a unique topological structure with the fingerprint minutiae using Delaunay triangulation. This allows for choosing more “meaningful” minutiae groups (i.e., triangles) during indexing, preserves index selectivity, reduces memory requirements without sacrificing recognition accuracy, and improves recognition time. Specifically, assuming N minutiae per fingerprint on average, the proposed approach considers only O(N) minutiae triangles during indexing or recognition. This compares favorably to O(N3), the number of triangles usually considered by other approaches, leading to significant memory savings and improved recognition time. Besides their small number, the minutiae triangles we used for indexing have good discrimination power since, among all possible minutiae triangles, they are the only ones satisfying the properties of the Delaunay triangulation. As a result, index selectivity is preserved and indexing can be implemented in a low-dimensional space. Some key characteristics of the Delaunay triangulation are: (i) it is unique (assuming no degeneracies), (ii) can be computed efficiently in O(NlogN) time, and (iii) noise or distortions affect it only locally. The proposed approach has been tested on a database of 300 fingerprints (10 fingerprints from 30 persons), demonstrating good performance

Published in:

Information Intelligence and Systems, 1999. Proceedings. 1999 International Conference on

Date of Conference:

1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.