By Topic

Design and realization of a 1.55-μm patterned vertical cavity surface emitting laser with lattice-mismatched mirror layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
H. Gebretsadik ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; O. Qasaimeh ; Hongtao Jiang ; P. Bhattacharya
more authors

It is possible to grow defect-free strained layers on patterned substrates (mesas or grooves) up to thicknesses far exceeding the critical thickness. Defect nucleation and propagation are inhibited in such growth. We have exploited this property to propose a novel InP-based 1.55-μm vertical cavity surface emitting lasers (VCSEL's). Careful photoluminescence and transmission electron microscopy (TEM) studies have confirmed that there are no propagating defects in the GaAs/AlxGa1-xAs distributed Bragg reflector (DBR) grown on the patterned InP-based heterostructures, specifically in the multiquantum-well (MQW) region. Lasers were designed with InP/InGaAsP bottom mirrors, InAlAs-oxide current confinement and short-stack GaAs/Al xOy top DBR mirrors. An optimal reflectivity and a maximum wall plug efficiency are determined analytically for this structure. In addition, a theoretical analysis of the modulation response of this device is performed using a rate equation model. Both analyzes show the potential of such a device for implementation in practical designs where high power and modulation bandwidth are required. Lasers with 8-40 μm diameter have been fabricated and characterized. A threshold current of 5 mA is observed at 15°C for an 8 μm diameter device; and up to 60 μW of light output is recorded

Published in:

Journal of Lightwave Technology  (Volume:17 ,  Issue: 12 )