By Topic

Performance analysis of the total least squares ESPRIT algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ottersten, B. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Viberg, M. ; Kailath, T.

The asymptotic distribution of the estimation error for the total least squares (TLS) version of ESPRIT is derived. The application to a uniform linear array is treated in some detail, and a generalization of ESPRIT to include row weighting is discussed. The Cramer-Rao bound (CRB) for the ESPRIT problem formulation is derived and found to coincide with the asymptotic variance of the TLS ESPRIT estimates through numerical examples. A comparison of this method to least squares ESPRIT, MUSIC, and Root-MUSIC as well as to the CRB for a calibrated array is also presented. TLS ESPRIT is found to be competitive with the other methods, and the performance is close to the calibrated CRB for many cases of practical interest. For highly correlated signals, however, the performance deviates significantly from the calibrated CRB. Simulations are included to illustrate the applicability of the theoretical results to a finite number of data

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 5 )