Cart (Loading....) | Create Account
Close category search window
 

Adaptive-trail routing and performance evaluation in irregular networks using cut-through switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenjian Qiao ; IBM Transarc Lab., Pittsburgh, PA, USA ; Ni, L.M. ; Rokicki, T.

Cut-through switching promises low latency delivery and has been used in new generation switches, especially in high speed networks demanding low communication latency. The interconnection of cut-through switches provides an excellent network platform for high speed local area networks (LANs). For cost and performance reasons. Irregular topologies should be supported in such a switch-based network. Switched irregular networks are truly incrementally scalable and have potential to be reconfigured to adapt to the dynamics of network traffic conditions. Due to the arbitrary topologies of networks, it is critical to develop an efficient deadlock-free routing algorithm. A novel deadlock-free adaptive routing algorithm called adaptive-trail routing is proposed to allow irregular interconnection of cut-through switches. The adaptive routing algorithm is based on two unidirectional adaptive trails constructed from two opposite unidirectional Eulerian trails. Some heuristics are suggested in terms of the selection of Eulerian trails, the avoidance of long routing paths, and the degree of adaptivity. Extensive simulation experiments are conducted to evaluate the performance of the proposed and two other routing algorithms under different topologies and traffic workloads

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:10 ,  Issue: 11 )

Date of Publication:

Nov 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.