Cart (Loading....) | Create Account
Close category search window

Probabilistic estimation-based data mining for discovering insurance risks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Apte, C. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Grossman, E. ; Pednault, E.P.D. ; Rosen, Barry K.
more authors

IBM's underwriting profitability analysis application mines property and casualty insurance policy and claims data to construct predictive models for insurance risks. UPA uses the ProbE data-mining kernel to discover risk-characterization rules by analyzing large, noisy data sets

Published in:

Intelligent Systems and their Applications, IEEE  (Volume:14 ,  Issue: 6 )

Date of Publication:

Nov/Dec 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.