By Topic

A comparison of inter-frame feature measures for robust object classification in sector scan sonar image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Tena Ruiz ; Ocean Syst. Lab., Heriot-Watt Univ., Edinburgh, UK ; D. M. Lane ; M. J. Chantler

This paper presents an investigation of the robustness of an inter-frame feature measure classifier for underwater sector scan sonar image sequences. In the initial stages the images are of either divers or remotely operated vehicles (ROV's). The inter-frame feature measures are derived from sequences of sonar scans to characterize the behavior of the objects over time. The classifier has been shown to produce error rates of 0%-2% using real nonnoisy images. The investigation looks at the robustness of the classifier with increased noise conditions and changes in the filtering of the images. It also identifies a set of features that are less susceptible to increased noise conditions and changes in the image filters. These features are the mean variance, and the variance of the rate of change in time of the intra-frame feature measures area, perimeter, compactness, maximum dimension and the first and second invariant moments of the objects. It is shown how the performance of the classifier can be improved. Success rates of up to 100% were obtained for a classifier trained under normal noise conditions, signal-to-noise ratio (SNR) around 9.5 dB, and a noisy test sequence of SNR 7.6 dB

Published in:

IEEE Journal of Oceanic Engineering  (Volume:24 ,  Issue: 4 )