By Topic

A regularized iterative image restoration algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Katsaggelos, A.K. ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL, USA ; Biemond, J. ; Schafer, R.W. ; Mersereau, R.M.

The development of the algorithm is based on a set theoretic approach to regularization. Deterministic and/or statistical information about the undistorted image and statistical information about the noise are directly incorporated into the iterative procedure. The restored image is the center of an ellipsoid bounding the intersection of two ellipsoids. The proposed algorithm, which has the constrained least squares algorithm as a special case, is extended into an adaptive iterative restoration algorithm. The spatial adaptivity is introduced to incorporate properties of the human visual system. Convergence of the proposed iterative algorithms is established. For the experimental results which are shown, the adaptively restored images have better quality than the nonadaptively restored ones based on visual observations and on an objective criterion of merit which accounts for the noise masking property of the visual system

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 4 )