Cart (Loading....) | Create Account
Close category search window
 

Statistical region snake-based segmentation adapted to different physical noise models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chesnaud, C. ; Domaine Univ. de Saint-Jerome, Marseille, France ; Refregier, P. ; Boulet, V.

Algorithms for object segmentation are crucial in many image processing applications. During past years, active contour models (snakes) have been widely used for finding the contours of objects. This segmentation strategy is classically edge-based in the sense that the snake is driven to fit the maximum of an edge map of the scene. We propose a region snake approach and we determine fast algorithms for the segmentation of an object in an image. The algorithms developed in a maximum likelihood approach are based on the calculation of the statistics of the inner and the outer regions (defined by the snake). It has thus been possible to develop optimal algorithms adapted to the random fields which describe the gray levels in the input image if we assume that their probability density function family are known. We demonstrate that this approach is still efficient when no boundary's edge exists in the image. We also show that one can obtain fast algorithms by transforming the summations over a region, for the calculation of the statistics, into summations along the boundary of the region. Finally, we will provide numerical simulation results for different physical situations in order to illustrate the efficiency of this approach

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:21 ,  Issue: 11 )

Date of Publication:

Nov 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.