By Topic

Multiple neural-network-based adaptive controller using orthonormal activation function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. Shukla ; High Technol. Corp., Hampton, VA, USA ; D. M. Dawson ; F. W. Paul

A direct adaptive control scheme is developed using orthonormal activation function-based neural networks (OAFNNs) for trajectory tracking control of a class of nonlinear systems. Multiple OAFNNs are employed in these controllers for feedforward compensation of unknown system dynamics. Choice of multiple OAFNNs allows a reduction in overall network size reducing the computational requirements. The network weights are tuned online, in real time. The overall stability of the system and the neural networks is guaranteed using Lyapunov analysis. The developed neural controllers are evaluated experimentally and the experimental results are shown to support theoretical analysis. The effects of network parameters on system performance are experimentally evaluated and are presented. The superior learning capability of OAFNNs is demonstrated through experimental results. The OAFNNs were able to model the true nature of the nonlinear system dynamics characteristics for a rolling-sliding contact as well as for stiction

Published in:

IEEE Transactions on Neural Networks  (Volume:10 ,  Issue: 6 )