By Topic

ANN-DT: an algorithm for extraction of decision trees from artificial neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. P. J. Schmitz ; Dept. of Chem. Eng., Stellenbosch Univ., South Africa ; C. Aldrich ; F. S. Gouws

Although artificial neural networks can represent a variety of complex systems with a high degree of accuracy, these connectionist models are difficult to interpret. This significantly limits the applicability of neural networks in practice, especially where a premium is placed on the comprehensibility or reliability of systems. A novel artificial neural-network decision tree algorithm (ANN-DT) is therefore proposed, which extracts binary decision trees from a trained neural network. The ANN-DT algorithm uses the neural network to generate outputs for samples interpolated from the training data set. In contrast to existing techniques, ANN-DT can extract rules from feedforward neural networks with continuous outputs. These rules are extracted from the neural network without making assumptions about the internal structure of the neural network or the features of the data. A novel attribute selection criterion based on a significance analysis of the variables on the neural-network output is examined. It is shown to have significant benefits in certain cases when compared with the standard criteria of minimum weighted variance over the branches. In three case studies the ANN-DT algorithm compared favorably with CART, a standard decision tree algorithm

Published in:

IEEE Transactions on Neural Networks  (Volume:10 ,  Issue: 6 )