By Topic

Asymptotic behavior of irreducible excitatory networks of analog graded-response neurons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pakdaman, K. ; Dept. of Biophys. Eng., Osaka Univ., Japan ; Malta, C.P. ; Grotta-Ragazzo, C.

In irreducible excitatory networks of analog graded-response neurons, the trajectories of most solutions tend to the equilibria. We derive sufficient conditions for such networks to be globally asymptotically stable. When the network possesses several locally stable equilibria, their location in the phase space is discussed and a description of their attraction basin is given. The results hold even when interunit transmission is delayed

Published in:

Neural Networks, IEEE Transactions on  (Volume:10 ,  Issue: 6 )