Cart (Loading....) | Create Account
Close category search window
 

High-rate through-mold electrodeposition of thick (>200 μm) NiFe MEMS components with uniform composition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Leith, S.D. ; Dept. of Chem. Eng., Washington Univ., Seattle, WA, USA ; Schwartz, D.T.

An electrodeposition process for achieving good uniformity, growth rate, and yield in NiFe microgears is described. Microgears are electrodeposited from a mixed nickel sulfanate/iron chloride electrolyte through a 230-μm-thick poly methylmethacrylate mold patterned using synchrotron X-ray radiation. Despite the use of a plating cell with nearly ideal wafer-scale electrolyte mixing characteristics [the uniform injection cell (UIC)], a degree of compositional variation in the microgears can arise. The composition variation is shown to be due primarily to nonuniformities in microscopic electrolyte mixing patterns within the mold. To a lesser extent, nonuniformity in the local current distribution also contributes to feature-scale composition variation. Improved composition uniformity is achieved when the plating bath is formulated to reduce the sensitivity to electrolyte agitation. Electrodeposition of MEMS components from a low-flow sensitivity electrolyte using the UIC results in NiFe growth rates greater than 60 μm/h, yields in excess of 90% and good compositional uniformity. Analysis of mechanical properties illustrates that NiFe parts made using this technique compare favorably to typical electrodeposited MEMS components made from nickel and copper

Published in:

Microelectromechanical Systems, Journal of  (Volume:8 ,  Issue: 4 )

Date of Publication:

Dec 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.