By Topic

Clustering of symbolic objects using gravitational approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ravi, T.V. ; IBM Solutions Res. Center, Indian Inst. of Technol., New Delhi, India ; Gowda, K.

Most of the techniques used in the literature in clustering symbolic data are based on the hierarchical methodology, which uses the concept of agglomeration or division as the core of the algorithm. The main contribution of this paper is to formulate a clustering algorithm for symbolic objects based on the gravitational approach. The proposed procedure is based on the physical phenomenon in which a system of particles in space converge to the centroid of the system due to gravitational attraction between the particles. Some pairs of samples called mutual pairs, which have a tendency to gravitate toward each other, are discerned at each stage of this multistage scheme. The notions of cluster coglomerate strength and global coglomerate strength are used for accomplishing or abandoning the process of merging a mutual pair. The methodology forms composite symbolic objects whenever two symbolic objects are merged. The process of merging at each stage, reduces the number of samples that are available for consideration. The procedure terminates at some stage where there are no more mutual pairs available for merging. The efficacy of the proposed methodology is examined by applying it on numeric data and also on data sets drawn from the domain of fat oil, microcomputers, microprocessors, and botany. A detailed comparative study is carried out with other methods and the results are presented

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 6 )