By Topic

POPFNN-AAR(S): a pseudo outer-product based fuzzy neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Quek, C. ; Intelligent Syst. Lab., Nanyang Technol. Inst., Singapore ; Zhou, R.W.

A novel fuzzy neural network, the pseudo outer-product-based fuzzy neural network using the singleton fuzzifier together with the approximate analogical reasoning schema, is proposed in this paper. The network is referred to as the singleton fuzzifier POPFNN-AARS, the singleton fuzzifier POPFNN-AARS employs the approximate analogical reasoning schema (AARS) instead of the commonly used truth value restriction (TVR) method. This makes the structure and learning algorithms of the singleton fuzzifier POPFNN-AARS simple and conceptually clearer than those of the POPFNN-TVR model. Different similarity measures (SM) and modification functions (FM) for AARS are investigated. The structures and learning algorithms of the proposed singleton fuzzifer POPFNN-AARS are presented. Several sets of real-life data are used to test the performance of the singleton fuzzifier POPFNN-AARS and their experimental results are presented for detailed discussion

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 6 )