By Topic

Linearization and state estimation of unknown discrete-time nonlinear dynamic systems using recurrent neurofuzzy networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qiang Gan ; Dept. of Electron. & Comput. Sci., Southampton Univ., UK ; Harris, C.J.

Model-based methods for the state estimation and control of linear systems have been well developed and widely applied. In practice, the underlying systems are often unknown and nonlinear. Therefore, data based model identification and associated linearization techniques are very important. Local linearization and feedback linearization have drawn considerable attention in recent years. In this paper, linearization techniques using neural networks are reviewed, together with theoretical difficulties associated with the application of feedback linearization. A recurrent neurofuzzy network with an analysis of variance (ANOVA) decomposition structure and its learning algorithm are proposed for linearizing unknown discrete-time nonlinear dynamic systems. It can be viewed as a method for approximate feedback linearization, as such it enlarges the class of nonlinear systems that can be feedback linearized using neural networks. Applications of this new method to state estimation are investigated with realistic simulation examples, which shows that the new method has useful practical properties such as model parametric parsimony and learning convergence, and is effective in dealing with complex unknown nonlinear systems

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:29 ,  Issue: 6 )